
Geophys. J. Int. (2005) 162, 927–934 doi: 10.1111/j.1365-246X.2005.02699.x

G
JI

S
ei

sm
ol

og
y

Scattering of elastic waves by a 2-D crack using the Indirect
Boundary Element Method (IBEM)

Ursula Iturrarán-Viveros,1 Rossana Vai1 and Francisco J. Sánchez-Sesma2
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S U M M A R Y
The scattering of elastic waves by cracks is an old problem and various ways to solve it have
been proposed in the last decades. One approach is using dual integral equations, another
useful and common formulation is the Boundary Element Method (BEM). With the last one,
the boundary conditions of the crack lead to hyper-singularities and particular care should be
taken to regularize and solve the resulting integral equations.

In this work, instead, the Indirect Boundary Element Method (IBEM) is applied to study
problems of zero-thickness 2-D cracks. The IBEM yields the Crack Opening Displacement
(COD) which is used to evaluate the solution away from the crack. We use a multiregional ap-
proach which consists of splitting a boundary S into two identical boundaries S+ and S− chosen
such that the cracks lie in the interface. The resulting integral equations are not hyper-singular
and wave propagation within media that contain zero-thickness cracks can be rigorously solved.

In order to validate the method, we deal with the scalar case, namely the scattering of
antiplane SH waves by a 2-D crack. We compare results against a recently published analytic
solution, obtaining an excellent agreement. This comparison gives us confidence to study cases
where no analytic solutions exist. Some examples of incidence of P- or SV waves are depicted
and the salient aspects of the method are also discussed.
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1 I N T RO D U C T I O N

The scattering and diffraction of elastic waves by cracks or inclu-
sions is an important engineering problem and has been investigated
by numerous authors. From the physical point of view the question
that arises is up to what degree a local perturbation in a medium
modifies the scattered wavefield. For instance, in seismic monitor-
ing, to enhance oil recovery a crucial problem is to determine zones
where there are changes in the physical properties. In naturally frac-
tured reservoirs these changes can sometimes be explained by the
extensive presence of empty or fluid-filled cracks and cavities. These
heterogeneities determine the pathways and volume of crustal fluid
movements and can drastically change productivity in oil fields.
Using statistical hypothesis or equivalent media theories, diffrac-
tion patterns caused by many cracks can be deduced from that of a
single crack (see Hudson 1986).

The problem of scattering from a finite crack is an old one, hence
the existing literature on the subject is vast. For instance, Ang &
Knopoff (1964a,b), dealt with diffraction of elastic waves by solv-
ing a system of integral equations. Mal (1970) studied the problem
of interaction of elastic waves with a Griffith crack by solving a Fred-
holm integral equation of the second kind to determine the diffracted
field. From the integral equation an asymptotic development of the

solution is obtained valid for wavelengths longer than the length of
the crack. From the point of view of ray theory Achenbach et al.
(1982) gathered a complete study. Coutant (1989) used a boundary
integral equation method (considering interior and exterior regions),
combined with the discrete wavenumber representation, to study one
or several fluid-filled cracks. van der Hijden & Neerhof (1984) study
scattering of P–SV waves by a 2-D crack. They use an integral equa-
tion formulation to deal with the jump in the particle displacement
across the crack. Then solve the resulting integral equation using a
complete sequence of Chebyshev polynomials. A study of the influ-
ence of the crack geometry on Rayleigh wave propagation is carried
out using the IBEM by Hevin et al. (1998). In order to analyse seis-
mic response caused by hydraulic fractures Pointer et al. (1998) used
the IBEM to show that diffraction from crack tips can, in principle,
be used to locate and to determine the hydro-fracture size. Another
approach, within the Boundary Element Methods (BEMs) is the one
given by Prosper (1998) where the author develops a new tool: the
Traction Boundary Element Method (TBEM) to model scattering
of waves by cracks in elastic media. Just as for the traditional for-
mulation, a critical step in the TBEM is the evaluation of integrals
with hyper-singular kernels.

When dealing with the problem of scattering of elastic waves by
cracks using the BEM, the boundary conditions of the crack lead
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to hyper-singular formulations and particular care should be taken
to regularize and solve the resulting integral equations, (see e.g.
Bonnet 1995). The aim of this paper is to overcome the problem of
singularities and to validate the IBEM to solve problems related to
diffraction of plane waves in a medium with cracks. To this end we
compare the solution obtained using the IBEM with an analytic solu-
tion by Sánchez-Sesma & Iturrarán-Viveros (2001) for the SH case
of a zero-thickness finite crack embedded in a 2-D elastic isotropic
homogeneous space. The validation of the IBEM for this problem
enables us to use it confidently to solve problems where there are
not known analytic solutions.

In the next section we proceed with the formulation of the prob-
lem. We explain how the multiregional approach can lead to a single-
layer integral representation and no hyper-singularities arise. The
multiregional approach is somewhat different to the one that Bonnet
(1995) uses. Therefore, numerical instability related to the interior
problem, if any, is avoided. In our formulation the domain in which
we can obtain cheap, stable and accurate results is limited, but we can
easily extend it by means of the Somigliana representation theorem
(see for instance Achenbach 1973; Aki & Richards 1980; Banerjee
& Butterfield 1981). Finally, in the last section we show and discuss
some new numerical results in both time and frequency domains.
The issues discussed herein have their natural counterparts in 3-D
problems which are studied elsewhere.

2 F O R M U L AT I O N O F T H E P RO B L E M

A crack can be thought of as the limiting case of a flat cavity as its
thickness goes to zero. As discussed by Cruse (1988), the conven-
tional BEM degenerates for the flat crack and is no longer a valid
numerical modelling tool. The degeneracy is essentially associated
with the ill-posed nature of problems with two co-planar surfaces.
In addition BEMs suffer from numerical noise due to characteristic
frequencies associated to closed areas or volumes. These problems
can be overcome when using a multiregional approach.

Consider propagation of elastic waves in an elastic homoge-
neous isotropic 2-D medium, the displacement u will be a function
of the position inside the plane. If the reference system is taken
such that the y-axis is perpendicular to the xz-plane we can write
the displacement as a function of the two coordinate system vari-
ables, that is u = u(x , z). Under these hypothesis Navier’s equa-
tions simplify by decoupling motion out-of-plane (uy) and in-plane
(ux and u z). The displacement out of the xz-plane is solution of
a scalar equation and this case is known as the SH-wave propa-
gation, whereas the displacement within the xz-plane is the solu-
tion of two coupled equations which describe the coupled P- and
SV waves. The second-degree partial differential equations are in
terms of the unknown displacements and of the elastic parameters
of the medium (typically we use the Lame’s constants λ and µ).
The shear waves SH and SV are transversely polarized waves with
propagation speed β = √

µ/ρ (being ρ the density). Compres-
sion P waves are longitudinally polarized waves travelling at speed
α = √

(λ + 2µ)/ρ.
Since linearity holds, the total displacement field can be expressed

as superposition of an incident or reference field, plus a diffracted
field, that is,

u = u(0) + u(d) ; (1)

where the superscripts (0) and (d) represent the reference and
diffracted fields, respectively. The incident field is analytically
known and for a harmonic plane wave as the one in Fig. 1 we write

u(0) = u0(ω) exp (ikx sin γ − ikz cos γ ) (2)

Figure 1. The x-axis of the reference system is taken perpendicular to the
2-D domain determined by the xz-plane. The incident plane wave is indicated
by the ray and it comes from infinite positive z. Where γ is the incidence
angle between the ray path and the z-axis (positive taken clockwise). We
consider SH- and P–SV incident waves.

where u0(ω) is the wave amplitude, ω is the angular frequency, k
is the wavenumber (k = ω/c), c is the propagation velocity (α or
β), and γ is the incidence angle. The time dependence of u, that is,
exp(−iωt), is omitted here and hereafter. The diffracted field is un-
known. Therefore, the goal is to find a suitable algorithm to compute
it or to find u directly. BEMs have proved to be very useful to com-
pute the displacement field in fractured media (Aliabadi 1997). In
this paper we give an original formulation of the IBEM to compute
the diffracted field. The basic idea is to manipulate the real boundary
of a crack, introducing fictitious surfaces and partitioning the orig-
inal domain. When compared with the traditional solution scheme,
this strategy implies increased memory requirements, but with pow-
erful benefits. For instance, we can rigorously solve zero-thickness
cracks. An irregular 2-D zero-thickness crack can be thought of as
an irregular segment (Fig. 2a). Firstly, let us draw a straight line
passing by the extremities of the crack, (see Fig. 2b), and use it to
extend the segment up to infinity (Fig. 2c). Of course, these aux-
iliary lines (2-D case) or surfaces (3-D case) are constructed finite
and in practice can be relatively small. The smallest region we have
used in the given examples for the crack’s elongation is a, half the
crack’s size. Then the curve in which the crack is embedded is di-
vided into two complementary 2-D subdomains, being S+ and S−

their boundaries (Figs 2d and 2e).
The illuminated surface S+ is the boundary which is first struck

by the incident wave. The shaded surface is denoted by S−. The
physics of the problem is recovered by suitable boundary conditions
along S+ and S−. Particularly, we need to set continuity of displace-
ments and tractions on the crack’s elongation and zero tractions on
the contour of the crack. The multi-domain approach is not a new
idea (Bonnet 1995) and we propose, instead, to split two infinite
subdomains. This device will be very useful for the numerical
method we planned to use; details will be discussed further.

Following Sánchez-Sesma & Campillo (1991) for each of the
boundaries S+ and S−, the IBEM equations are

u(d)(x) =
∫

S
φ(ξ )G (x, ξ ) d Sξ , (3)

t (d)(x) =
∫

S
φ(ξ )T (x, ξ ) d Sξ , (4)

where with appropriate subindices (3) and (4) describe either SH-
or P–SV wave propagation; u(d) (t (d)) is the diffracted displacement
(traction); G(x, ξ )(T (x, ξ )) is the displacement (traction) Green’s
function, i.e. the displacement (traction) at a point x caused by a
unit force at a point ξ ; φ(ξ ) is the force density at ξ and S is the
boundary. The integrals are computed along S. The expression of the
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Figure 2. The profile of a crack (a) is extended tracing a straight line passing
by the extremities of the fracture (b), so that the plane is divided into two
subdomains (c). The two subdomains can be handled separately and their
boundaries are named S+ and S− (d). (e) A 3-D view of what the procedure
of splitting the two domains means. We consider the size of the crack as 2a
and the extended non-physical domain discretized has size εa on each side
of the crack.

Green’s functions for the 2-D case can be found in Sánchez-Sesma
& Campillo (1991).

Green’s functions are singular for x = ξ , but they can be integrated
using power series (for G) or analytically in the Cauchy principal
value sense (for T). Moreover G(x, ξ ) on S+ is identical to G(x,
ξ ) on S− since the two surfaces perfectly match. The same can be
nearly stated for T when the unit normal vectors to S+ and S− are
equal, the only difference being in the sign of the singular term.

Numerical realization of boundary conditions of continuity at a
point x on the crack elongation are expressed by:

N∑
i=1

[
φ+(xi ) − φ−(xi )

] ∫

Si

G(x, ξ ) d Sξ = 0, (5)

1

2

[
φ+(x) + φ−(x)

] +
N∑

i=1

[
φ+(xi ) − φ−(xi )

] ∫

Si

T (x, ξ ) d Sξ = 0,

(6)

where the first equation corresponds to continuity of displacement
and the second defines continuity of traction. The surface S, interface
between the two subdomains, is discretized into straight segments

Si, the length of which is chosen to be at least one-sixth of the
wavelength for the frequency under study. The force density φ is
considered to be constant along 
Si so that it is evaluated just at its
middle point xi. The integrals in eq. (5) are computed expanding G
in power series when x ∈ 
Si. The integral in eq. (6) is null when
x ∈ 
Si, since the singularity is explicitly solved and expressed by
the first term of the equation. Numerical realization of boundary

conditions at a point x on the crack is expressed by:

1

2
φ+(x) +

N∑
i=1

φ+(xi )
∫


Si

T (x, ξ ) d Sξ = −t (0)+(x) , (7)

−1

2
φ−(x) +

N∑
i=1

φ−(xi )
∫


Si

T (x, ξ ) d Sξ = −t (0)−(x). (8)

Note that in eqs (5)–(8) subscripts for force density and Green’s
functions are omitted. In the SH case, we have 2N unknowns with
2(N − M) continuity and 2M crack conditions, where M is the
number of segment used to discretize the crack. Following the same
notation, in the P–SV problem, there are 4N unknowns with 4(N −
M) continuity and 4M crack conditions.

Eqs (5)–(8) allow us to form a non-singular system for which
there is a unique solution. Once the unknown force densities are
found one can substitute them into eq. (3), properly discretized, to
obtain the displacement at any point x of the medium. However,
there is a better strategy we can adopt. Considering the whole 2-D
space domain and recalling Somigliana’s identity in the frequency
domain, we can write the following integral equation

u(d)(ξ ) =
∫

S

[
t (d)(x)G(x, ξ ) − u(d)(x)T (x, ξ )

]
d Sx, (9)

where ξ lies inside one of the subdomains, x ∈ S and S = S+ ∪ S−.
It is convenient that normal vector points away from the physical
domain (as for S+). This means that the normal at S− should change
direction. In that case diffracted and Green’s tractions satisfy

t (d)+
i

∣∣
S

= −t (d)−
i

∣∣
S

T +(x, ξ ) = −T −(x, ξ ), (10)

Moreover, as the Green’s functions G(x, ξ ) are independent of the
normal vector definition, eq. (9) can be rewritten as:

u(d)(ξ ) =
∫

S+

u(x)T +(x, ξ ) d Sx, (11)

where T + is the traction Green’s function calculated accordingly
to the unit normal vector pointing outward the illuminated space,
and 
u(x) = u+(x) − u−(x) is the Crack Opening Displacment
(COD) which is the displacement difference between the shaded and
illuminated sides of the crack. Unnecessary operations are cleared
away and accuracy increases by using eq. (11) instead of (9). In
numerical applications there is an important benefit of the use of
Somigliana’s identity instead of the classical IBEM equations. S+

and S− should be infinite surfaces, but this is manifestly inconsistent
with any numerical realization. The cutting of S is required at any
effect. The numerical method we choose (the IBEM) can be seen
as realization of Huygens’ principle: wave fronts are reproduced
by radiating sources distributed along a surface. When S is cut,
the set of sources along this boundary is interrupted and artificial
diffraction at the edges is introduced. This spurious effects are not
visible inside suitable space-time windows, depending on the length
of S, the location of the observer and on wave speeds. Displacement
along the crack can be calculated considering a short extension
of S but accurate computation of displacement at any point and
time of the media, would require a very large extension of S and
this is reflected in high computational costs. By introducing the
extended non-physical regions (next to each of the crack’s edges)
we are adding extra unknowns to the system of linear equations to be
solved. This is a current limitation of the method because it increases
computational costs (specially for 3-D cases). We could alleviate the
problem by using sparse matrix computations (see Ortiz-Alemán
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et al. 1998). With the use of Somigliana’s identity the IBEM is used
to calculate the COD along the crack, so that numerical noise is
easily avoided and we obtain clean solutions at any point or time
with low computational costs.

3 N U M E R I C A L R E S U LT S

In this section, we show comparisons between the results obtained
using the IBEM and results obtained with an analytic solution for
a plane crack with zero thickness (see Sánchez-Sesma & Iturrarán-
Viveros 2001 and the appendix for further details)

Synthetic seismograms are computed from frequency-domain re-
sults using a Fast Fourier Transform (FFT) algorithm. In Figs 3 and
4 we show synthetic seismograms for an incident SH plane wave
with incidence angle γ = 0◦(γ = 30◦) impinging on the crack in
Fig. 1. A Ricker wavelet with characteristic period tp = 1 s centred
at ts = 2 s is chosen to excite the system. The analytical solution
and the numerical (calculated using the IBEM) solutions are super-
imposed. Hereafter we refer to a dimension-less domain where the
wave propagation velocity and the density are both a unit. In this

Figure 3. Seismograms for an incident wave front with incidence angle
γ = 0◦. The incident time signal is a Ricker wavelet with characteristic pe-
riod tp = 2.0 s. The finite crack is located within the interval [−1, 1]. (a)
Seismograms for a line of equally spaced receivers is located at z = 1.
The incident wave front reaches stations on the illuminated side before
than the crack. Therefore, the wave front does not have perturbations. After
2 s. the reflected and diffracted waves arrive. (b) Seismograms for a line
equally spaced receivers located at z = −1. Since these stations are on the
shaded side of the crack the incident wave front is perturbed.

Figure 4. Seismograms for an incident wave front with incidence angle
γ = 30◦. The incident time signal is a Ricker wavelet with characteristic
period tp = 2.0 s. The agreement between results obtained with the analytic
solution and with the IBEM is excellent. The finite crack is located within
the interval [−1, 1]. (a) Seismograms for a line of equally spaced receivers is
located at z = 1. The incident wave front reaches stations on the illuminated
side before than the crack. Therefore, the wave front does not have pertur-
bations. After 3s the reflected and diffracted waves arrive. (b) Seismograms
for a line equally spaced receivers located at z = −1 in the shaded region,
energy is due to diffracted waves.

example the finite crack is located within the interval [−1, 1] along
the x-axis. Fig. 3(a) shows that the diffracted wavefield reaches 11
equally spaced stations located at z = 1 with x ∈ [−2, 2] (i.e. on
the illuminated side of the crack). Fig. 3(b) shows the diffracted
wavefield at 11 equally spaced stations located at z = −1 with
x ∈ [−2, 2]. Energy spread to the shaded strip created by the crack
and the wave front. Cylindrical diffracted waves are generated at the
edges of the crack. The first pulse corresponds to the incident wave
then we see the arrival of the reflected and diffracted waves. The
agreement between the analytical and the IBEM solutions is very
good for both incidences. Therefore, we can confidently apply the
method to a problem where there is not known analytic solution. For
example a zero-thickness, semi-circular crack (depicted in Fig. 5).
In Fig. 6, an SH plane wave with incidence angle γ = 30◦ (with
respect to the z-axis) strikes the semi-circular crack with radius r =
a = 1 and zero thickness. In order to identify all the generated waves
when an incident plane wave strikes the crack, in the snapshots we
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Figure 5. The x-axis of the reference system is taken perpendicular to the
2-D domain determined by the xz-plane. The incident plane wave is indicated
by the ray and it comes from infinite positive z. Where γ is the incidence
angle between the ray path and the z-axis (positive taken clockwise). We
consider SH- and P–SV incident waves striking a semi-circular crack.

Figure 6. An SH plane wave with incidence angle γ = 30◦ (with respect to the z-axis) strikes a semi-circular crack with radius r = 1 and zero thickness. The
incident time signal is a Ricker wavelet with characteristic period tp = 1.0 s and ts = 5.0 s. (1) Denotes the incident wavefield. (2) Corresponds to the reflected
wave. (3) Is the diffracted wave generated at the left edge of the crack. (4) This is the diffracted wave generated at the left edge of the crack on the illuminated
side, is the counterpart of (3). The diffracted wave generated at the left edge of the crack is labelled (5) Identifies the diffracted wave generated at the left edge
of the crack. Due to the shape of the crack the amplitude of the diffracted field is generally higher in the shaded region.

have labelled different waves with different numbers. The incident
time signal is a Ricker wavelet with characteristic period tp = 1.0 s.
We are able to identify the following:

(1) the incident wave,
(2) the reflected wave,
(3) the first cylindrical diffracted wave generated at the left edge

of the crack on the shaded side,
(4) the first diffracted wave generated at the left edge of the crack

on the illuminated side and
(5) the first diffracted wave generated at the right edge of the

crack.

For the P–SV case we consider a finite straight crack located
within the interval [−1, 1]. Contour maps of displacement ampli-
tudes for 41 equally spaced receivers located at z = −0.1 with
x ∈ [−2, 2] against the normalized frequency η = ωa/πβ are
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Figure 7. Contour maps of displacement amplitudes ux and u z given in eq. (11) for P (top) and SV incident waves (bottom). Incident angle γ = 0◦ (with
respect to the z-axis). These ( f –x) diagrams display the crack displacement amplitudes for 41 equally spaced receivers located along the interval x ∈ [−2, 2]
at z = −0.1 against the normalized frequency η = ωa/πβ. We use a Poisson’s ratio of ν = 0.33 and β = 1. We can see symmetry on the four ( f –x) diagrams.
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Figure 9. A P- and SV plane waves [(a) and (b), respectively], with incidence angle γ = 45◦ (with respect to the z-axis) strike a semi-circular crack with
radius r = 1 and zero thickness. The incident time signal is a Ricker wavelet with characteristic period tp = 1.0 s and ts = 5.0 s. This case is for a Poisson’s
ratio of ν = 0.33 and β = 1. A set of 101 × 101 equally spaced receivers are located on the square [−2, 2] × [−2, 2]. We have computed the rotational
and divergence fields to display the P- and SV waves (red and green respectively). Note that for both incidences scattering is stronger for SV waves than for
P waves. The incident P wave quickly disappears and diffraction is mainly of S waves.

shown in Fig. 7. Both P and SV incident waves with γ = 0◦ are
considered. We use a Poisson’s ratio of ν = 0.33 and β = 1. Sym-
metry is correctly preserved when a symmetric excitation is used.

Fig. 8 shows synthetic seismograms for 41 equally spaced re-
ceivers located at z = −0.1 with x ∈ [−2, 2]. The incident time
signal is a Ricker wavelet with characteristic period tp = 1 s. and
ts = 3 s. This case is for a Poisson’s ratio of ν = 0.33 and β = 1.
We see P- wave incidence at the top and SV wave incidence at the
bottom, ux and u z components are shown.

Fig. 9 shows the response of a crack excited by P and SV plane
waves ((a) and (b) respectively), with incidence angle γ = 45◦ (with
respect to the z-axis). The crack is semi-circular (as shown in Fig. 5)
with radius r = a = 1 and zero thickness. The incident signal is a
Ricker wavelet with characteristic period tp = 1.0 s and ts = 5.0 s.
This case is for a Poisson’s ratio of ν = 0.33 and β = 1. A set of 101 ×
101 equally spaced receivers are located on the square [−2, 2] ×
[−2, 2]. We have computed the rotational and divergence fields to
display the P- and SV waves (red and green respectively). Note
that for both incidences scattering is stronger for SV waves than for
P waves. The incident P wave quickly disappears and diffraction is
mainly of S waves.

4 C O N C L U S I O N S

We have tested IBEM to solve scattering of SH waves by a zero-
thickness crack. The method was tested against an analytical so-
lution, for a canonical case, obtaining excellent agreements. By
splitting the crack into two different domains, problems related to
hyper-singularities have been overcome. The IBEM allows us to
study media with arbitrary shaped cracks SH and P–SV wave scat-
tering. More complex configurations of heterogeneities, fluid-filled
cracks or cavities and 3-D cases will be presented in further pub-
lications using this technique. Computational costs increase with
the frequency, this limits the resolution and is a serious constrain.
However, parallel computing for methods in the frequency domain
is much simpler than time domain computation based on domain
decomposition. This is an advantage of the IBEM and it will help to
study more realistic problems in the near future. Numerical results
are encouraging but further work is needed to be able to deal with

the inverse problem, that is, to determine the crack’s shape, size and
location from scattered wavefields.
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A P P E N D I X A : S U M M A RY O F T H E
A N A LY T I C A L S O L U T I O N

Here we give a summary of the analytical solution used to test the
IBEM for SH waves diffracted by a zero-thickness crack. For further
details the reader is referred to Sánchez-Sesma & Iturrarán-Viveros
(2001). The total field on the illuminated side of the crack is given
by

v(t)+ = 2v0eikx sin γ − v(d)− , (A1)

where the displacement v(d)− on the shaded side is given by

v(d)− = v
(d)−
0 + v1 Z − v2

1 − Z 2
s(r1)F(

√
2kr1)

+ v2 Z − v1

1 − Z 2
s(r2)F(

√
2kr2), (A2)

where

v
(d)−
0 = v0e−ika sin γ s(r1) F

(√
2kr1 sin

θ0

2

)

+ v0eika sin γ s(r2) F

(√
2kr2 sin

θ1

2

)
,

(A3)

function v1 is given by

v1 = v0e−ika sin γ s(2a)F

(√
4ka sin

θ1

2

)
, (A4)

v2 is given by

v2 = v0eika sin γ s(2a)F

(√
4ka sin

θ2

2

)
, (A5)

function Z is given by

Z = s(2a)F(
√

4ka), (A6)

and the auxiliary function s(r ) is

s(r ) = 2√
π

eikr−i π
4 . (A7)

Function F is a Fresnel integral given by

F(z) = exp (−i z2)
∫ ∞

z
exp (iτ 2) dτ (A8)

In addition we have that

v(d)+ = −v(d)− and v(t)− = v(d)− . (A9)
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